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Supplementary	Figure	1.	Development	of	MutaSeq.	See	also	Figure	1.	

a. Comparison	of	different	strategies	for	targeting	14	genomic	sites	of	interest	during	Smart-seq2	

library	preparation;	see	Supplementary	Data	4	for	primers	used.	In	the	targeted	RT	protocol,	

a	reverse	transcription	primer	carrying	the	ISPCR	sequence	was	placed	downstream	of	 the	

sites	of	interest.	In	the	targeted	RT+	direct	library	PCR	protocol,	a	targeted	RT	primer	without	

ISPCR	sequence	was	used	in	conjunction	with	targeting	primers	included	during	PCR.	In	the	

targeted	 PCR	 protocol,	 PCR	 primers	 were	 used	 to	 generate	 amplicons	 of	 250-350	 bases,	

whereas	 in	the	direct	 library	PCR	protocol,	shorter	amplicons	were	used	and	primers	were	

fused	 to	Nextera	 sequencing	adapters;	 see	also	Figure	1b.	K562	cells	were	 sequenced	with	

each	protocol	and	the	number	of	genes	observed	per	cell	as	well	as	the	number	of	target	sites	



covered	was	quantified.	The	number	of	cells	sequenced	per	condition	(n)	is	indicated	in	the	

axis	labels.	Error	bars	indicate	the	standard	error	of	the	mean.	For	all	analysis	in	this	panel,	

reads	 were	 down-sampled	 to	 250,000	 reads	 per	 cell	 prior	 to	 alignment	 to	 account	 for	

differences	in	coverage.	

b. Boxplot	 comparing	 the	 mean	 number	 of	 reads	 per	 target	 in	 the	 different	 protocols.	 See	

Methods	section	on	Data	Visualization	for	a	definition	of	boxplot	elements.	The	number	of	cells	

sequenced	per	condition	is	indicated	in	the	axis	labels.	

c. Bioanalyzer	 traces	 for	a	protocol	 targeting	 sites	of	 interest	 during	RT	only.	Concentrations	

correspond	to	the	final	concentration	of	targeting	primers	in	the	RT	reaction.	

d. Bioanalyzer	traces	for	a	protocol	targeting	sites	of	interest	during	library	amplification	PCR	

(MutaSeq).	Arrows	highlight	the	MutaSeq	amplicons.	Concentrations	correspond	to	the	final	

concentration	of	targeting	primers	in	the	PCR	reaction.	

e. Primer	sets	developed	for	the	MutaSeq	patients	(Supplementary	Data	4)	were	combined	in	all	

possible	 combinations	 (i.e.	 P1+P2	 primers,	 P1+P3+P4	 primers,	 etc.)	 and	 libraries	 were	

generated	 from	 n=8	 K562	 cells	 each	 to	 evaluate	 the	 effect	 of	 multiplexing	 primers	 on	

alignment	 rate	 (left)	 and	 number	 of	 genes	 observed	 (right).	 Error	 bars	 indicate	 standard	

deviation.	

f. Primer	 pairs	 were	 designed	 surrounding	 randomly	 selected	 sites	 on	 13	 highly-expressed	

genes	in	K562	cells	(Supplementary	Data	4).	The	MutaSeq	protocol	was	then	performed	using	

these	primers	on	n=48	K562	cells.	For	each	gene,	the	number	of	reads	from	MutaSeq	amplicons	

(i.e.	complete	matches)	is	shown,	after	subtracting	the	average	coverage	of	the	surrounding	

areas	 outside	 of	 the	 targeted	 site	 (i.e.	 potential	 background	 signal).	 Seven	 cells	 with	 poor	

alignment	rates	(below	50%)	were	removed.	n=41	cells	are	shown.	

g. Amplicon	counts	for	13	genes	across	41	cells	is	shown	as	boxplots.	The	points	in	the	overlaid	

beeswarm	plot	represent	n=41	cells.	Same	underlying	data	as	used	in	Supplementary	Figure	

1f.	See	Methods	section	on	Data	Visualization	for	a	definition	of	boxplot	elements.	

h. Number	of	genes	observed	per	cell,	across	n=206	(Smart-seq2)	or	n=658	CD34+	(MutaSeq)	

cells.	See	Methods	section	on	Data	Visualization	for	a	definition	of	boxplot	elements.	

i. Mean	gene	expression	levels	measured	by	Smart-seq2	are	compared	to	mean	gene	expression	

levels	measured	by	MutaSeq.	Color	reflects	point	density.	

j. Logarithmic	coverage	of	the	mitochondrial	genome	compared	between	different	methods1–3.	

For	 the	plot	on	 the	 right,	 coverage	was	normalized	 to	 the	number	of	 reads	aligning	 to	 the	

transcriptome.	



	
Supplementary	Figure	2.	FACS	sorting	schemes	and	quality	control	of	single-cell	RNA-seq	data.	

See	also	Figure	2+3.		

a. Gating	schemes	used	for	the	different	patients.	

b. Index	values	of	cells	included	into	the	final	data	set	

c. Top	left:	number	of	cells	from	the	various	gates	included	into	the	final	data	set;	see	panel	a/b	

for	a	color	scheme.	Top	right:	fraction	of	cells	passing	filters,	stratified	by	patient	and	gate.	

Bottom:	box	plots	depicting	the	number	of	genes	observed	in	cells	from	the	final	data	set.	The	

number	of	single	cells	underlying	each	box-and-whisker	plot	(n)	is	specified	in	the	figure.	See	

Methods	section	on	Data	Visualization	for	a	definition	of	boxplot	elements.	

d. uMAP	plot	of	cells	from	all	individuals,	with	cells	color	coded	according	to	their	sorting	gate.	

See	panel	a/b	for	a	color	scheme,	and	main	Figures	3a-e	and	Supplementary	Fig.	7a	for	a	more	

detailed	description	of	the	uMAP.	



	
Supplementary	Figure	3.	Evaluation	of	nuclear	markers	for	clonal	tracking	in	single-cell	RNA-

seq	data.	See	also	Figure	2.	

a. Heatmap	depicting	mutation	calls	of	nuclear	genomic	mutations	only	for	P1.	Clustering	was	

performed	 as	 described	 in	 the	 methods,	 section	 Analysis	 of	 mitochondrial	 mutations	 and	

reconstruction	of	clonal	hierarchies,	except	that	here,	only	nuclear	mutations	were	included.	

Rows	represent	cells.	

b. The	full	specification	of	clonal	identities	in	case	of	P1	requires	log2(5)	bits	of	information,	since	

there	are	five	main	clones	(Figure	2e).	For	each	of	n=1430	cells,	the	information	available	from	

nuclear	 genomic	 sites	 only,	 or	 both	 nuclear	 and	 mitochondrial	 sites,	 was	 quantified	 as	

described	 in	the	Methods,	section	Analysis	of	mitochondrial	mutations	and	reconstruction	of	

clonal	 hierarchies.	 See	 Methods	 section	 on	 Data	 Visualization	 for	 a	 definition	 of	 boxplot	

elements.	

c. Box	plots	evaluating	the	extent	to	which	differences	in	library	quality	affect	measurements	of	

the	mutational	status	of	target	genes;	data	for	914	cells	with	the	HSC/MPP-like,	CD34+	AP1-

high	and	CD34+	AP1-low	identies	 from	P1	 is	shown.	The	number	of	single	cells	underlying	

each	 box-and-whisker	plot	 (n)	 is	 specified	 in	 the	axis	 labels.	 See	Methods	 section	 on	Data	

Visualization	for	a	definition	of	boxplot	elements.	

d. Like	panel	c,	but	investigating	the	effect	of	the	expression	of	a	targeted	gene	on	the	observed	

mutational	 status.	 The	 number	 of	 single	 cells	 underlying	each	 box-and-whisker	plot	 (n)	 is	

specified	in	the	axis	labels.	See	Methods	section	on	Data	Visualization	for	a	definition	of	boxplot	

elements.	



	
Supplementary	Figure	4.	Calling	of	mitochondrial	 somatic	variants	 in	 the	absence	of	a	DNA-

based	reference.	See	also	Figure	2.	For	an	implementation	and	for	reproducing	the	computations,	see	

the	package	vignettes	of	the	mitoClone	package.	

a. Overview	of	the	computational	strategy	used.	In	the	case	of	data	from	a	group	of	individuals,	

sites	were	filtered	based	on	coverage	and	annotated	as	‘mutant’	if	a	specified	fraction	of	reads	

deviates	from	the	reference	allele.	Sites	were	then	excluded	as	likely	RNA	editing	events	if	the	

same	mutation	was	observed	 in	more	than	one	 individual.	Alternatively,	 in	the	case	of	data	

from	 a	 single	 individual,	 similar	 coverage	 based	 filtered	were	 applied	 and	 data	 was	 then	

filtered	against	a	blacklist	created	from	a	cohort.	

b. Allele	 frequencies	and	coverage	of	mitochondrial	mutations	 from	P2	 in	 single-cell	RNA-seq	

data	compared	to	whole	exome	sequencing	data	(WES).	Sites	with	less	than	10	reads	per	cell	

in	 RNA-seq	 were	 classified	 as	 not	 expressed.	 Variants	 that	 were	 observed	 in	 WES	 were	

classified	as	validated	(circles),	other	variants	were	classified	as	not	validated	(triangles).	The	

low	correlation	between	the	two	datasets	 is	 likely	due	to	different	starting	cell	populations	

(WES:	Total	bone	marrow,	single	cell	RNA-seq:	enriched	for	CD34+	cells),	and	data	are	only	

used	for	qualitative	statements	(presence/absence	of	mutations).	

c. Bar	charts	summarizing	the	classifications	from	panel	b.	Left,	mutation	sites	are	split	by	their	

label	based	on	the	mitoClone	pipeline;	right,	sites	are	split	by	whether	they	were	detected	in	

WES.	



d. De	novo	variant	calling	and	clustering	of	a	CML	patient	dataset.	Data	from	ref.	4	were	processed	

and	clustered	with	the	mitoClone	package. The	same	variant	filtering	approach	used	on	the	
patients	 from	 our	 study	 was	 used.	 Thereby,	 two	 patients	 with	 substantial	 mitochondrial	

variability	were	 identified	and	 in	both	 cases	 clones	associated	with	the	BCR-ABL	mutation	

were	 resolved	 in	an	 unsupervised	manner.	 The	 analysis	 by	 ref.	 5	 had	missed	 one	 of	 these	

patients,	did	not	achieve	an	unsupervised	separation	of	BCR-ABL+	and	BCR-ABL-	cells	in	either	

case	(Figure	7G	in	ref.	5),	and	instead	relied	on	stratifying	cells	by	the	existing	BCR-ABL	label	

(Figure	7J	in	ref.	5).	

e. De	novo	variant	calling	and	clustering	of	single	cells	from	hematopoietic	colonies	derived	from	

a	 single	 individual.	 Data	 from	 Figure	 5	 of	 ref.	 5	 were	 processed	 and	 clustered	 with	 the	

mitoClone	package.	Left	panel	shows	unsupervised	clustering	of	mutations	identified	by	the	

mitoClone	package,	right	panel	quantitatively	compares	unsupervised	clustering	and	colony	

labels.	27	of	the	colonies	were	identified	in	an	unsupervised	manner.	The	analysis	by	ref.	5	had	

identified	approximately	half	 that	number	by	unsupervised	analyses	(their	Figure	5E),	and	

using	supervised	methods	identified	mitochondrial	mutations	associated	with	33	clones	(their	

Figure	5H).		

f. De	novo	variant	calling	and	clustering	of	single	cells	from	a	single	colorectal	cancer	patient.	

Data	 from	 Figure	 7	 of	 ref.	 5	 were	 processed	 and	 clustered	 with	 the	 mitoClone	 package.	

Clustering	structure	obtained	by	PhISCS	is	shown	and	compared	to	the	clustering	presented	

in	ref.	5	(row	labeled	‘original’),	which	was	based	on	variant	filtering	using	a	DNA-seq	based	

reference.	Despite	the	different	 filtering	approaches,	our	unsupervised	clustering	separated	

the	clusters	identified	by	Ludwig	et	al.	and	identified	additional	variability.	



	
Supplementary	Figure	5.	Evaluation	of	mitochondrial	markers	for	clonal	tracking	in	single-cell	

RNA-seq	data.	See	also	Figure	2.	

a. Association	between	various	mutations	(y	axis)	and	nuclear	mutations	(panels)	across	n=1430	

cells	from	P1	or	n=1066	cells	from	P2.	P-values	are	from	a	two-sided	Fisher	test.		

b. Association	 between	 the	 lowly	 covered	mutations	 in	DNMT3A,	SPEN	 and	TET2	with	 clonal	

identity.	Scatter	plot	depicts	total	coverage	on	the	site	of	interest	(x	axis)	and	the	number	of	

mutant	reads	(y	axis)	across	n=1066	cells	from	P2	(left	panel)	or	n=1430	cells	from	P1	(central	

and	right	panel).		Note	that	jitter	was	added	in	the	x	and	y	direction	to	avoid	overplotting.	P-

values	are	from	a	chi-square	test	comparing	a	model	where	the	probability	of	detecting	at	least	

one	mutant	read	was	modelled	as	a	function	of	total	coverage	(null	model),	or	a	function	of	

total	coverage	and	identity	as	a	non-AML/upstream	clone	(alternative	model).	

c. 	Box	plots	evaluating	the	extent	to	which	differences	in	marker	gene	expression	and	library	

quality	affect	clonal	assignments	when	using	mitochondrial	marker	mutations;	data	for	914	

cells	with	the	HSC/MPP-like,	CD34+	AP1-high	and	CD34+	AP1-low	identies	from	P1	is	shown.	



Clone	labeled	SRSF2	refers	to	the	pre-leukemic	clone	from	main	figure	2	while	clones	labeled	

KLF7	and	CEBPA	refer	to	the	leukemic	clones.	Number	of	single	cells:	n=262	(SRSF2	clone),	

n=155	(CEBPA	clone),	n=378	(KLF7	clone)	and	n=113	(Upstream	clone).	See	Methods	section	

on	Data	Visualization	for	a	definition	of	boxplot	elements.	

d. Effect	of	read	depth	on	mitochondrial	clusters.	Clusters	obtained	from	mitochondrial	sites	only	

were	 computed	 at	 full	 read	 depth	 (row	 “Original	 clusters”)	 and	 are	 compared	 to	 clusters	

obtained	using	the	same	methodology	from	data	were	single	cells	were	down-sampled	to	read	

depths	of	500k,	100k,	or	20k	per	cell	(“Downsampled”).	Data	from	Patient	1	is	shown.	

e. Like	panel	c,	but	for	patient	2	(P2).	

f. Original	 clustering	 result	 and	 down-sampled	 clustering	 result	 are	 compared	quantitatively	

using	the	Rand	index.	

	
Supplementary	Figure	6.	De	novo	calling	and	characterization	of	clones.	See	also	Figure	2.	For	an	

implementation	and	 for	 reproducing	 the	 computations,	see	the	package	vignettes	of	 the	mitoClone	

package.	

a. Unsupervised	clustering	of	mitochondrial	mutations	identified	from	a	Smart-seq2	dataset	of	

n=672	cells	from	patient	P1.		

b. De	novo	identification	of	nuclear	somatic	variants	associated	with	the	clonal	labels	from	panel	

a.	Difference	 in	Aikake’s	 Information	Criterion	 (AIC)	 is	 shown	 for	a	 comparison	between	a	

model	 where	 allele	 frequencies	 are	 the	 same	 across	 all	 cells,	 and	 a	 model	 where	 allele	

frequencies	 differ	 between	 clones.	 Red	 line	 highlights	 the	 intercept.	 See	 Methods	 section	

Analysis	of	mitochondrial	mutations	and	reconstruction	of	clonal	hierarchies.		

c. Boxplot	of	single-cell	allele	 frequencies	 for	the	SRSF2	P95H	mutation	summarized	between	

clones	 (Smart-seq2	 data).	 Number	 of	 single	 cells:	 n=57	 (clone	 1),	 n=201	 (clone	 2),	 n=141	

(clone	 3),	 n=80	 (clone	 4),	 n=4	 (clone	 5).	 See	Methods	 section	 on	Data	 Visualization	 for	 a	

definition	of	boxplot	elements.	



d. Bar	plot	of	contribution	of	clones	to	T	cells	 identified	 from	unsupervised	clustering	of	gene	

expression	data	(see	also	Figure	3).	

e. Boxplot	of	single-cell	allele	frequencies	for	the	RPL3	mutation	(COSV53365368)	summarized	

between	 clones	 (MutaSeq	 data).	 Red	 dashed	 line	 highlights	 the	 allele	 frequency	 of	 the	

mutation	 identified	 in	exome	sequencing.	Number	of	single	cells:	n=200	(non-AML),	n=641	

(pre-AML),	n=225	(AML).	

	
Supplementary	Figure	7.	Analysis	of	single-cell	gene	expression	data.	See	also	Figure	3.	

a. Expression	 of	marker	 genes	 on	 the	 uMAP	 from	Figure	 3.	 Top	 rows:	 log-normalized	mRNA	

expression.	Bottom	row	(labels	preceded	FACS_):	Logicle	transformed	FACS	index	values.	

b. Heatmap	depicting	the	expression	of	selected	marker	genes	across	T-cells	 from	patients	P1	

and	P3.	Columns	are	cells.	

c. uMAP	representation	of	all	T-cells	from	patients	P1	and	P3.	Data	from	these	cells	only	were	

integrated	using	MNN6	and	visualized	in	two	dimensions	using	uMAP.	Patients	P2	and	P4	were	

omitted	 from	 this	 analysis	 due	 to	 an	 insufficient	 number	 of	 T	 cells.	 Colors	 denote	 cluster	

identity.	

d. Loadings	plot	of	a	principal	component	analysis	of	all	CD34+	blasts	 from	Patient	P1.	Genes	

associated	with	erythroid	or	megakaryocytic	priming7	are	highlighted	in	red.	

e. Scores	plot	of	a	principal	component	analysis	of	all	CD34+	blasts	from	Patient	P1.	Expression	

levels	of	the	FCER1A	gene	are	color-coded.	

f. uMAP	 representation	 of	 all	 cells	with	a	 healthy	HSPC-like	 gene	 expression	 signature	 from	

patients	P1,	P2	and	P4.	These	include	both	healthy	and	pre-(leukaemic)	clones,	see	figure	4.	



Data	from	these	cells	only	were	integrated	using	MNN6	and	visualized	in	two	dimensions	using	

uMAP.	Left	panel:	clonal	identity	is	highlighted,	using	the	same	strategy	as	in	Figure	4e.	Right	

panels:	Point	 color	 represents	 the	expression	of	 genes	 involved	 in	differentiation	(MPO	 for	

myeloid	differentiation,	FCER1A	for	erythroid/megakaryocytic	differentiation)	and	cell	cycle	

(TYMS,	MCM2).		

	
Supplementary	Figure	8.	Analysis	of	single-cell	clonal	tracking	data.	See	also	Figures	4	and	5.	

a. Bar	chart	depicting	the	percentages	of	cells	with	coverage	of	the	mutations	used	for	annotating	

clones	in	P3	and	P4.	

b. Bar	 chart	 depicting	 the	 absolute	 cell	 numbers	 of	 the	 different	 clones	 in	 the	 different	 cell	

populations.	Cells	were	assigned	to	clones	as	in	Figure	4e.	

c. Scatter	plot	depicting	the	fraction	(Fr.)	of	(pre-)leukemic	cells	in	relation	to	the	fraction	of	cells	

from	 the	 sub-clones	 for	P1.	Dotted	 line	 indicates	 the	mean	 ratio	across	all	 cells,	 error	bars	

denote	95%	confidence	 intervals	 from	a	beta	distribution,	 and	asterisk	 indicate	 significant	

deviation	from	the	mean	ratio,	as	follows:	*:	p	<	0.05;	**:	p	<	0.01;	***:	p	<	0.001.	p-values	are	

from	a	two-sided	binomial	test	and	were	not	adjusted	for	multiple	testing.	Only	cells	with	a	

confident	assignment	to	clones	(likelihood	>	0.8,	see	Methods	section	Analysis	of	mitochondrial	



mutations	 and	 reconstruction	 of	 clonal	 hierarchies)	 are	 included.	 See	 figure	 source	 data	 for	

number	of	single	cells	underlying	each	group.	

d. As	 Supplementary	 Figure	 8c	 but	 investigating	 instead	 the	 second	 patient	 (P2).	 See	 figure	

source	data	for	number	of	single	cells	underlying	each	group.	

e. Boxplots	 comparing	 the	 normalized,	 scaled	 expression	 levels	 of	 CD96	 between	 cells	 with	

evidence	of	originating	from	the	non-leukemic	clone(s),	and	cells	with	evidence	of	originating	

from	 the	 leukemic	 or	 pre-leukemic	 clones.	 Cells	 were	 assigned	 to	 clones	 as	 in	 Figure	 4e.	

Asterisk	denote	p-values	from	a	two-sided	Wilcoxon	test	for	relevant	comparisons:	leukemic	

P2	vs.	all	non-leukemic:	1.7e-40;	leukemic	P3	vs.	all	non-leukemic:	4.1e-31;	leukemic	P1	vs.	all	

other	leukemic:	6.4e-8.	See	figure	source	data	for	number	of	single	cells	underlying	each	group.	

See	Methods	section	on	Data	Visualization	for	a	definition	of	boxplot	elements.	

f. Venn	diagram	depicting	the	number	of	open	chromatin	regions	containing	a	KLF7	binding	site,	

the	number	of	open	chromatin	regions	proximal	to	tumor	suppressor	genes	from8,	and	their	

overlap.	N=15067	open	chromatin	regions	were	identified	from	single-cell	ATAC-seq	data	of	

human	CD34+	bone	marrow	cells9.	P	value	is	from	a	hypergeometric	test.	

g. Scatter	 plot	 comparing	 the	 log10	 mean	 gene	 expression	 levels	 in	 CD34+	 blasts	 from	 the	

CEBPA-mutated	clone,	and	CD34+	blasts	from	the	KLF7	mutated	clone.	N=15,451	genes	with	

a	mean	expression	of	at	least	1	in	either	population	are	shown.	Color	represents	point	density.	

	
Supplementary	Figure	9. Overview	of	capabilities	of	MutaSeq	compared	 to	 related	methods.	
Full-l.:	 full-length.	 SmartSeq2:	 ref.	 5,10.	 TARGET-seq:	 ref.	 2.	 GoT-seq:	 ref.	 11.	 0	 means	 theoretically	

possible,	but	unproven	and/or	very	limited.	

	



	
Supplementary	Figure	10.	Estimation	of	MutaSeq’s	false	positive	rate.	

a. To	estimate	MutaSeq’s	 false	positive	rate,	a	polyadenylated	 in	vitro	transcript,	pGIBS-Thr12,	

was	added	to	every	second	well	(A1,	A3,	B2,	B4,	etc.)	during	the	P1	experiment.	Abundance	of	

the	pGIBS-Thr	spike-in	across	wells	from	four	representative	plates	is	shown.	

b. Estimation	of	the	false	positive	rate	using	the	pGIBS-Thr	spike-in.	Dashed	bold	line	indicates	

the	threshold	used	for	classifying	a	site	as	dropout.	

	 	



Supplementary	Table	1.		Antibodies	used	for	flow	cytometry.	
Antigen	 Used	for	 Clone	 Fluorochrome	 Company	 Catalogue	No.	 Dilution	

CD135	 Index	Sort	 4G8	 PE	 BD	Pharmingen	 558996	 1:20	

CD15	 Colony	Classification	 W6D3	 Alexa700	 BioLegend	 323026	 1:100	

CD19	 Colony	Classification	 HIB19	 eFluor	450	 eBioscience	 48-0199-42	 1:80	

CD19	 Index	Sort	 HIB19	 APC	 eBioscience	 17-0199-42	 1:20	

CD20	 Index	Sort	 2H7	 APC	 BD	Pharmingen	 559776	 1:20	

CD235a	 Colony	 Classification/Index	

Sort	

HIR2	 APC	 BD	Pharmingen	 551336	 1:30	

CD33	 Colony	Classification	 WM-53	 PE-Cy7	 eBioscience	 12-0338-42	 1:200	

CD33	 Index	Sort	 WM53	 BV421	 BioLegend	 303416	 1:100	

CD34	 Colony	 Classification/Index	

Sort	

4H11	 APC-eFluor	780	 eBioscience	 47-0349-42	 1:30	

CD38	 Index	Sort	 HIT2	 Alexa	700	 eBioscience	 56-0389-42	 1:30	

CD4	 Index	Sort	 RPA-T4	 APC	 BD	Pharmingen	 555349	 1:20	

CD41a	 Colony	Classification	 HIP8	 FITC	 eBioscience	 11-0419-42	 1:200	

CD41a	 Index	Sort	 HIP8	 APC	 eBioscience	 17-0419-42	 1:30	

CD45	 Colony	

Classification/Mesenchymal	

sort	

HI30	 PE	 eBioscience	 12-0459-42	 1:200	

CD45RA	 Index	Sort	 HI100	 FITC	 BioLegend	 983002	 1:20	

CD66b	 Colony	Classification	 G10F5	 PerCP/Cy5.5	 BioLegend	 305108	 1:100	

CD8	 Index	Sort	 RPA-T8	 APC	 BD	Pharmingen	 555369	 1:20	

CD90	 Index	Sort	 5E10	 PE-Cy5	 BD	Pharmingen	 555597	 1:20	

GPR56	 Index	Sort	 CG4	 PE-Cy7	 BioLegend	 358206	 1:20	

Tim3	 Index	Sort	 F38-

2E2	

BV605	 BioLegend	 345018	 1:50	

CD105	 Mesenchymal	sort	 43A3	 FITC	 BioLegend	 323204	 1:30	
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